

Outline

- · Yesterday, the good
 - Fertiliser
- · Today, the good and the bad
 - Pollution
- N and P
 - Cattle & pigs
 - Efficiency

Message

- Manure is fascinating!
- Feed utilisation efficiency affects:
 - Polluting potential of manure/slurry
 - Demand for feed nutrients
 - Farmer income

1830s

Dramatic advances in the understanding of fertilisers

- · Early fertilisers were crushed bones
 - Escher (1835)
 - Ca₃(PO₄)₂ + 2 H₂SO₄ → Ca(H₂PO₄)₂ + 2 CaSO₄
- Prof. Justis von Liebig
 - Explained importance of manures and their uptake by plants

'Chemistry in its Application to Agriculture and Physiology'
(British Association, 1837)

 Believed plants were able to obtain N from the air!

John Lawes & Henry Gilbert

- John Laws (Rothamsted, Hertfordshire)
 - Manufactured superphosphate from bones and coprolites (Deptford Creek, 1843)
- Henry Gilbert
 - Appointed to manage Rothamsted trials
- Classical Experiments (1843 present)
 - Demonstrated conclusively that plants need N for healthy growth

Guano (1842 - 1870)

- First true compound fertiliser
 - Blend of nitrogen, phosphates and potash
- High N content
 - Uric acid cf. urea
- Islands off Peru
 - Favourable weather conditions
 - Sea birds
 - · 11,000 tonnes guano/year
 - Deposits 60 meters thick
- 1870
 - 280,000 tonnes imported

Antony Gibbs & Sons (1842-1861)

The house of Gibbs that made their dibs By selling the turds of foreign birds

- → Fertiliser business became part of Fisons
- → Merchant Bank taken over by HSBC (1981)
- London's sewage system
- Samuel Plimsoll
 - Merchant Shipping Act (1876)
 - · Plimsoll Line
- (Ship High In Transit)

Manure output

Planning storage facilities Farm nutrient balance calculations

Cattle (540 kg)		Pigs (110 kg)
	Average animal	
40	Manure output (kg/animal/d)	7
0.246	N output(kg/animal/d)	0.04
0.137	P output (kg/animal/d)	0.033
	Average UK herd	
143 (dairy)	Herd size (2016)	450
5.72	Manure output (t/herd/d)	3.15
35.2	N output (kg/herd/d)	18.0
19.6	P output (kg/herd/d)	14.9
	Global 'herd'	
1,474,887,717	Head (2016)	981,797,339
58,995,509	Manure output (t/d)	6,872,581
362,822	N output (t/d)	39,272
202,060	P output (t/d)	32,399

Consider:

large intensive production units

Soy Global Trade Flows (2012)

What is science doing?

- Feed conversion efficiency (FCE):
 Live weigh gain / feed intake
- Improved feed utilisation efficiency on a per unit of production basis:
 - Reduces nutrient content of manure & slurry
 - Reduces polluting potential of manure & slurry
 - Reduces demand for feed nutrients
 - (Improves farmer income)

Manure composition (N, P)

Cattle (540 kg)	(kg/d/1,000 kg LW)	Pigs (110 kg)
74	Manure output	64
0.456	Nitrogen	0.366
0.254	Phosphorus	0.296
Cattle manure contains ca 25% more N/unit LW than pig manure	Why?	Pig manure contains ca 17% more P/unit LW than cattle manure

Comparative digestive physiology

Cattle

- Ruminants
- Four-chambered stomach
- Pre-gastric fermentation

Pigs

- Non-ruminants
- Simple stomach
- · Post-gastric fermentation

Solutions

- Stimulate microbial protein synthesis
 - Microbial nutrient requirements (energy)

- · High sugar forages
 - e.g. AberGold, AberDart
- Limit rate of proteolysis
 - Tannins
 - Polyphenol oxidase

Non-ruminants: phytate digestion

Dietary phosphate supplementation

Phosphate (phosphorite) rock mining

Mono- and di-calcium phosphate

Not sustainable!

Solutions

- Dietary phytase supplementation
 - GM fungi (moulds and yeasts) and bacteria
- GM crops
 - Barley, lucerne, maize, rapeseed, rice and soybeans
- Enviropig

30

E. colli

Aspergillus spp.

Sacchoromyces spp.

Message

- Manure is fascinating!
- Feed utilisation efficiency affects:
 - Polluting potential of manure/slurry
 - · Demand for feed nutrients
 - Farmer income

