Institute for Transport Studies

FACULTY OF ENVIRONMENT

Headingley Café Scientifique

Use of Life Cycle Assessment (LCA) in Comparing the Environmental Impacts of Commuting

Dr Yue Huang
Associate Professor, CEng, FHEA
Institute for Transport Studies, University of Leeds, UK
09.10.2023

Speaker

- ☐ BEng 2001, MSc 2003, Chang'an University, China
- ☐ PhD 2007, Newcastle University, UK
- ☐ Research Engineer, Scott Wilson (now AECOM), 2007-2011
- ☐ Research Fellow, University of Nottingham, 2011-2012
- ☐ Lecturer, Liverpool John Moores University, 2012-2018
- ☐ Lecturer Associate Professor, University of Leeds, 2018-present. Duties include:

* Research and Support

- o Life cycle assessment, pavement evaluation and recycling, road safety
- Deputy Director of Postgraduate Research (PGR) Studies

❖ Teaching and Support

- Highway Engineering, Maintenance of Pavements, Transport Integrated Project
- Programme Leader, MSc Transport Planning and Engineering
- o Programme Director, BEng Civil Engineering with Transport

1.Introduction to environmental Life Cycle Assessment (LCA)

- Background
- Method framework

2. Case studies

- E-bike and electric vehicles for commuting
- Other uses in road, rail, energy, structures, etc.
- 3. Resources, Opportunities and Challenges

Background

For product development, it is to <u>identify</u> the high impact process and <u>prioritize</u> for reduction.

Background UNIVERSITY OF LEEDS

· Know the big picture of construction

Benefit I: avoid overlooking the high impact area

Sub-Sector	MtCO ²	% of total
Design	1.3	0.5%
Manufacture	45.2	15%
Distribution	2.8	1%
Operations on- site	2.6	1%
In Use	246.4	83%
Refurb/Demolition	1.3	0.4%
Total	298.4	100%

Source: Department for Business Innovation and Skills 2010

LCA phase 1 - System Boundary (example) UNIVERSITY OF LEEDS

LCA phase 1 - Functional Unit

- · Understand the functional unit:
 - To provide a level playing field;

800ml ≠ 500ml

- Allocation method:
 - ☐ Mass:

☐ Economic value;

☐ Energy content; Consider product durability

- · System boundary:
 - ☐ Gate to gate;
 - ☐ Cradle to gate;
 - ☐ Cradle to grave;

Consider supply chain

LCA phase 2 – Inventory (example)

UNIVERSITY OF LEEDS

Production of 1 tonne of bitumen	Unit	Crude oil extraction	Transport	Refinery	Storage	Total
Raw material						
Crude oil	kg	1000				1000
Consumption of energy resources						
Natural gas	kg	18.9	0.4	0.58	0.19	20.1
Crude oil	kg	17.5	9.3	11.9	2.2	40.9
Coal	kg		0.21	0.49	0.33	1.03
Uranium	kg		0.00001	0.00003	0.00002	0.0001
Consumption of non energy resources						
Water	1		48	72	24	143
Emissions to air						
co,	g	99,135	30,078	37,200	7,831	174,244
SO ₂	g	290	334	130	27	781
NO _x	g	270	436	52	11	770
co	g	524	70	16	3	613
CH₄	g	548	16	25	6	595
Hydrocarbon	g	0.015	4.6	3.5	38.7	46.8
NMVOC	g	297	15	15	3	331
Particulates	g	132.6	12.7	12.6	3.4	161.2
Emissions to water						
Chemical Oxygen Demand	g		130	176	30	336
Biological Oxygen Demand	g		128	166	30	324
Suspended solids	g		9.4	16.4	4.1	30.0
Hydrocarbon	g	6.9	40.9	52.5	9.5	109.8
Phosphorous compounds	g		2.52	6.77	4.79	14.1
Nitrogen compounds	g		0.95	4.40	1.51	6.86
Sulphur compounds	g		63.2	165.9	119.0	348.1
Emissons to soil						
Hydrocarbon (oils)	g	8.1	42.6	54.9	10.0	116

Source: Eurobitume 2011

LCA phase 3 - Impact Assessment

Source: IPCC 2007

GHGs	CO2	CH4	N2O	HFCs	PFCs	SF6
CO2 - eq	1	25	298	12-12,000	5,700-11,900	22,200

LCA phase 4 - Interpretation

UNIVERSITY OF LEEDS

Impact category		Units	Design A	Design B
Depletion of minerals	Quarried products	Tonne	286.25	154.75
	Bitumen	Tonne	6.92	7.92
Energy consum	Energy consumption		121.16	59.48
Global warming potential		kg CO ₂ -eq. (100yrs)	8.91E+03	4.41E+03
Acidification		kg SO ₂ -eq.	26.00	13.10
Low-level ozone creation		kg C ₂ H ₄ -eq.	2.66	2.86
Eutrophication		kg PO ₄ -eq.	1.84	0.91
Human toxicity		kg 1,4- dichlorobenzene-eq	10.76	10.82
Solid waste		Tonne	303.17	161.53

Benefit 2: avoid trading off one impact with another

Source: Huang 2007

Contents

- 1.Introduction to environmental Life Cycle Assessment (LCA)
 - Background
 - Method framework
- 2. Case studies
 - E-bike and electric vehicles for commuting
 - Other uses in road, rail, energy, structures, etc.
- 3. Resources, Opportunities and Challenges

Case Study - Background

- I.L-category vehicles lighter, greener?
- 2. Electric L-category vehicles
- 3. Questions remained for vehicle LCA
 - Non-exhaust (e.g. brake and wear) emissions
 - Noise impacts

Case Study - Model and Data (example) UNIVERSITY OF LEEDS

Case Study - Data

- ☐ LCA models/databases, e.g. GREET, SimaPro
- Literature data, e.g. UK DEFRA
- Horizon project data, e.g. ELVITEN

Source: Huang 2022

Case Study - Results

- 1. Electrification reduced some, while increased other, impacts
- 2. Key data/assumptions are important
 - Electricity generation mix
 - Vehicle energy efficiency
 - * Battery supply chain and end-of-life (EOL)
- 3. Non-exhaust emissions had significant health impacts

Ongoing doctoral projects

· LCA of rail tracks

Source: Kiani 2008

Comparison of the whole life energy consumption associated with three types of bruck bude

Scope. **Thirtufricturing. Construction, Standardine, Remeated Demonstring and Recycling**

2 900000

2 900000

3 900000

3 900000

3 900000

3 900000

3 900000

4 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 9000000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 900000

5 9000000

5 9000000

5 900000

5 900000

5 900000

5 900000

5 900000

5 9000000

LCA in Bio-fuel

- √ 'Carbon neutral';
- ✓ Less emissions on combustion, compared with fossil fuels;
- ✓ But think about life cycle;
- √ Think about change in land use;

Benefit 4: avoid shifting the problem elsewhere

Contents

- 1.Introduction to environmental Life Cycle Assessment (LCA)
 - Background
 - Method framework
- 2. Case studies
 - E-bike and electric vehicles for commuting
 - Other uses in road, rail, energy, structures, etc.
- 3. Resources, Opportunities and Challenges

LCA - Resources

☐ Commercial LCA software are available, e.g. SimaPro

- √ Built-in inventory databases;
- √ Accuracy and speed;

- X Licence fee;
- × Investment in staff training;
- Share modelling and data library with project partners;

A good LCA model is:

- ➤ Industry recognised (methodology, datasets);
- > Populated with current and reliable data;
- > Transparent with system boundary, functional unit, allocation, etc.;
- > Forward compatible for data update and formulae revision;

Source: Huang 2007

Summary

Summary of benefits:

■Avoid	overlo	ooking	hot-spot	areas
	O . C	011111111111111111111111111111111111111		mi -m-

- Avoid trading off one impact with another, possibly worse, impact
- ☐ Avoid shifting the problem elsewhere
- Help to make informed decision, e.g. asset management

Some weaknesses:

- Time consuming, needs subject knowledge, need good quality data
- ☐No sensitivity to time or location
- ■No economic or social perspectives

Publications

- Huang Y, Jiang L, Chen H, Dave K, Parry T. 2022. Comparative life cycle assessment of electric bikes for commuting in the UK. Transportation Research Part D: Transport and Environment. 105
- Galatioto F, Huang Y, Parry T, Bird R, Bell M. 2015. Traffic modelling in system boundary expansion of road pavement life cycle assessment. Transportation Research Part D: Transport and Environment. 36, pp. 65-75
- Huang Y, Spray A, Parry T. 2013. Sensitivity analysis of methodological choices in road pavement LCA. The International Journal of Life Cycle Assessment. I(13), pp. 93-101
- Huang Y, Bird R, Heidrich O. 2009. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. *Journal of Cleaner Production*. 17(2), pp. 283-296

